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. 1. INTRODUCTION’

THE balanced incomplete block design first introduced in agricultural
experimentation by Yates (1936) is a Solution of the combinatorial
problem of arranging v varieties (or treatments) in & blocks df k (< 'v)-
varieties (or treatments) each such that every variety (or treatment)
occurs in r blocks and every pair of varieties (or treatments) occurs
in A blocks. From the combinatorial point of view, it is a A-2-k
tactical configuration which is. a- particular case of, the complete
A-p-k configurations, with u =2 (Bose, 1939). The five parameters
v, b, k, r, A are not all independent but satisfy the two 'well-kngw‘n,ﬂ
equations 3 | o e
: bk = vr . (L
k=D =A@—1 . T (1.2).
When it is possible to arrange a balaneed incomplete block design

in r sets of n blocks each such that each set constitutes a complete
replication, the design is called a resolvable balanced incomplete block
design (Bose, 1942). Obviously, therefore, ‘
S Y = nk : | : ,; (13)

‘ b:nf o (1.4){
Various inequality relations among parameters of the balanced.
incomplete block d=sign, regardless of resolvability, and the resolvable
balanced incomplete block design have been derived by Fisher (1940), .

Bose (1942) and Nair (1943). Considering, first, the balaficed-incom;;~
plete bloqk design (irrespective of its resolvability), the inequalitigs:,

. given by Fisher and. Nair are respectively

by - ey
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k(r— 1)

b2+ - 09

1o S':ctlon 2, a new proof has. been given of Fisher’s inequality
(1.5 _

In Sectlon 3, the fol]owmg two new mequahtles have been derived:

b=zv+r—~Lk (1.7

(v—k b —r—1)? (1.8)
b—v—r+b+G-2r+n)F—k—1 )
It has been shown that whilst the inequality (1.7), like the
inequality (L.6), gives an arithmetically closer limit for ‘5’ than the
inequality (1.5), these are stronger than Fisher’s inequality only in the
arithmetical sense and not for seeking the combinatorial solution to our
problem inasmuch as no integral numbers b, v, k, r, A satisfying the
equations (1.1) and (1.2) exist such that '

‘ vKb<T (1.9)
where I denotes the right-hand side of any of the two inequalities

. (1.6) and (1.7). Consequently, 562> v implies that 5> I. None of the
two inequalities is, therefore, combinatorially more stringent than
Fisher’s inequality.

It has also been demonstrated that whllst the inequality (1.8)
gives an arithmetically closer limit for ‘5’ than either (1.5) or (1.6)
for designs for which v>> 2k, it is combinatorially not stronger than
Fisher’s inequality.

=1+

"For the resolvable balanced incomplete block design, Bose (1942)
‘and Nair (1943) have obtained the following inequalities:

b=v4r—1 (1.10)
rk (r — 1)
b2 kA=) - @D

It has been shown that here also no integral numbers b (= nr)
v (= nk), k, r, A satisfying (1.1) and (1.2) exist such that
y<b< I (1.12),
and
viEr—1g<b< I, (1.13)
where I’ denotes the right-hand side of (1.10) and I” that of (1.11).
It, therefore,° follows that Bose’s inequality (1.10) is combinatorially
not more stringent than Fisher’s inequality, and that Nair’s inequality.
(1.11) is combinatorially not more stringent than Bose’s ineq‘ualit‘y? :
and consequently also than Fisher’s inequality,

.



R - P L S L I : - P
BARAMETERS OF THE BALANCED INCOMPLETE BLOCK DESIGN 139

2. Proor oF FISHER’S INEQUALITY b= v

A new proof of Fisher’s inequality 5> v has been glven by
Bose (1949). Another proof of it will now be given.
Let us suppose that only the block totals in a balanced incomplete

block design represented by B, B, ..., B, are known, and not the
individual values (or yields) for each plot separately. Let m be the

true mean, and fy, £y, .., Ly ( z t, = 0) the varietal effects, block
effects being ignored. -
Then
k
EB)=km+ 2t (i=12,...,b) 2.0
r=1
where ¢;, ..., i, are the varjetal effects corresponding to the k&

varieties occurring in the i-th block, are the b independent observational
equations in v mdependent unknowns. We now proceed to show that all
the treatment contrasts are estimable, so that b= v necessarily. These
estimates of treatment contrasts: are known as inter-block estimates.”

Let B,s denote the sum of totals for blocks contammg varlety

s=1
i, and similarly, let b Bjs denote the sum of totals for blocks contammg
variety j. o
Then .
E(Zr' )—km/+(l —A) L, ' 2.2
and " . - ‘ -
E ( Zr,;Bjs)"': kmr + (l; —:/\) £ (2:3)

Consequently, from (2.2) and (2.3), we obtain

3 Bi, — 2 Bj, ‘
E| & &= ",_;fl =t—1 ' 2.4

Hence all the treatment contrasts are estimable, whence b2 v
necessarily.

3. Two NEw INEQUALITIES FOR THE BALANCED
IncoMPLETE BLOCK DESIGN

We now proceed to derive the two new inequalities (1. 7) and (1.8)
among parameters of the balanced mcomp]ete block des1gn irrespec-
tive of resolvability.
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(3.1) The inequality (1.7).—It is well known that if there exists

a combinatorial solution with parameters v, b, k, r, A, there also exists

the complementary solution with parameters v/, b', k/, ', X' where

V= b =bk=v—Ikr=5b—r N=5b—2r+2A (3.0

" Now, using 'Fisher’s: inequality (1.5)" for parametets of the

complementary solution, we readily obtain .

bzv+r—k o (3.2)

Since b= v or r>= k, it follows that ’
v+r—kz=vy,

so that this inequality gives an a}ithmetically closer limit for ‘5’
than Fisher’s inequality.

(3.2) The inequality (1.8).—Using Nair’s inequality (1.6) for
parameters of the complementary design given above, we readlly obtain
the new 1nequa11ty

(v —kb—r—12 (3' 3)
b—v—r+b+0G—-2r+DN—k—1) '

To prove that this inequality is arithmetically stronger than Fisher’s
inequality, we have only to show that

w—KkGb—r—12
(b—v—l+/c)+(b—2)+)\)(v—/c—l)

b=1 -+

— 1.

.Usmg the relations (1.1) and (1.2), it would appear that this mequ'thty

holds if
v—10 (v —kr—k)?
k[(r —/()(v——l)+f(v—k——1)]

ie., if v&r® + k% — 2vkr? — vkr 4 vk — v¥er .__-‘k,3,- -+ 2vk2e> 0,
ie., if (r — k) [k (kr —v) -+ v (v— 2k)]> 0,

-1

which is so for designs for which, v> 2k, since r>=k, and kr — v
=@A—=1 v+ —2)>0 since )\>‘1 and r> A,

We shall now demonstrate that this inequa'li"t:y also gives an
arithmetically closer limit for ‘5’ than Nair’s inequality (1.6) for
designs for-which v>>2k. = ‘

: For this it is enough to show that

v—KkB—-r—1)2, > k(r—1)2
b—v—r+4k+(@®— 21+/\)(v———/(—1) r—k+ Al ~1y

o
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which is so if

(v —1 (vr — kr — k)? < k(r—D2(v—1) + .

Ck[r—k) (v - 1)—}~1(v—k—l)2]/(v—1)(l—/c)—l—r(k——l)” :
Te., if -

Vo2 — 4yt — vy + 2vk2r — v3kr + 4vik2r 4 y2? — 2vk
+ 6vk2/ 2 — Adk3r® A Akctr — 6vkRr =
ie., if '
(v—2k)(r —l) [vr(v—2k) + k Qkr —v)]=0
which is so since r >k, and 2kr > kr> v, and v> 2k by assumption.
4. EXAMINATION OF THE STRINGENCY OF THE INEQUALITIES
FOR THE BALANCED INCOMPLETE BLOCK DESIGN

We shall now show.that the inequalities (1.6), (1.7) and (1.8)
are combinatorially not more stringent than the Fisherian inequality,

(4.1) The inequality (1.6).—If possible, let there exist an integral
solution for v, b, k, r, A satisfying the equatlons (1.1) and (1.2) such

‘that

k(r—12
iy Py y ¢

v<b<1—i—r

Replacing ° b by , this gives

vr——k< k(r—1D2@r—-1
k =D (r —k)—i—/(k—l)2

Simplifying, we obtain

r(r—k)y(v—*%? <0

Hence 63> v implies that
K (r — 1)
—k+ Ak —1y

b>1+

and Nair’s mequahty is thus combmatorlal,ly not more stringent than

Fisher’s 1nequahty

4. 2) The inequality (1.7). —~Suppose if possible, there exist variable
integers v, b, k, r, A satisfying (1.1) and (1.2) such that
' v h<yFr—k
We, therefore, obtain
S vk <v+r —k,

or .
v—KB@F~—-kF<o,
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or r < k, which contradicts the assumption that r> k. Hence this
inequality is also combinatorially not more stringent than Fisher’s
inequality.

(4.3) The inequality (1.8).—If possible, let there exist variable
integers v, b, k, r, A satisfying (1.1) and (1.2) such that

(v—Fk)(b—r—1)72

v—r4+k+G—=2r )0 —k—1)

This gives
v —k < (v — V) (vr —kr —k)?
klr—k(v—10)+r(—k=DT
Simplifying, we obtain
(r =K@ —k—0)<(@-—1 0+ ke2r — 2vkr
— vk 4 2k2 — v + k),

or
' k2 (r —k) <0,

or r< k, again contradicting the assumption r>k. Hence b=
implies

v—kb—r—1)2
G—v—r+lb+bG-—2r+H0—k—1)
and the latter inequal'ity is combinatorially not more stringent than the
former.

b>=1+

5. EXAMINATION OF THE STRINGENCY OF THE INEQUALITIES FOR THE
RESOLVABLE BALANCED INCOMPLETE BLOCK. DESIGN

We shall now prove that Bose’s inequality (1.10) for the resolv-
able balanced incomplete block design is combinatorially not more
stringent than Fisher’s inequality, and that Nair’s inequality (I.11)
is combinatorially not more stringent than Bose’s inequality, and
consequently also than Fisher’s inequality.

(5.1) Bose’s inequality (1.10).—If possible, let there exist variable
integers v (= nk), b (= nr), k, r, A satisfying (1.1) and (1.2) such that

y<b<v+r—1 - (5.1
From (1.2), we obtain ' )
/\ (n—1) '

R (3-2) |
) 1 |
whence, since M is integral, n > 1 and k> 1, it follows that —/(”' —1 ) }
. k — 1. !
is a positive integer. (5.3) :
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Now, from (5.1), we have

b<<v-fr—1,
or '
o TE=D
A
or
A(n—1)
k—1 <1,

143

which is contrary to (5.3). Hence no variable integers exist .satisfyin‘g.;:'-

the inequality
b<v+4r—1,

and consequently also the inequality
y<b<v+r—1.

Hence 5> v implies that b>v + r — 1, and Bose’s inequality,
therefore, is combinatorially not more stringent.than Fisher’s inequality.
(5.2) Nair's inequality (1.11).—Suppose, if possible, there. exists
an integral solution for v (= nk), b (=nr), k, r, A satisfying (1.1) and

(1.2) such that

yhr—l<b< ik (r — 1)

r—k+Ak—1)

Since b= v 4+ r — 1, we have, as before,

A —1) .
%=1 =1 and integral.
Now, from (5.4), we obtain
Trk(r—1)
b G =Ty
or
alr—k+Alk—D]<k(-1),
or

(=D —A-k <0,
or, since n>> 1,
r—A—k<0,
or, using (5.2),
Afn—1)
k[l—*l— — ] <0,

or -
An=1)
k—1

which is contrary to the result (5.5).

< 1,

4

(5.4).

(5.5)
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rk(r—1)
R (E=5

therefore, Nair’s 1nequa11ty is combmatorlally not stronger than ‘Bose’s
inequality, and consequently also than. Fisher’s inequality.

Hence b>v -+ r —1 implies that b> " and,

6. CONCLUSION AND SUMMARY

~ The above investigation shows that for the parameters of the
balanced incomplete block design, whether non-resolvable or resolvable,
the known 1nequahty relations derived by Bose, Nair and in Section
3 of. the' ‘present paper are, from the combinatorial point of view, not
more stringent than Fisher’s inequality 5> v, which consequently comes
out as the fundamental - inequality among ‘the parameters of the
balanced incomplete block design. :
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